8.7 Perturbaciones debidas a la acción de otro astro lejano

 

            Partiremos de la fórmula

                                                                        (62.8)

 

obtenida en 7.5.1, que expresa el valor de la fuerza perturbatriz por unidad de masa debida a la presencia de un astro lejano (en aquel caso la Luna). En ella, m3 es la masa de la Luna,  es la distancia Tierra - satélite artificial,  la distancia satélite-Luna,  la distancia Tierra—Luna y ψ el ángulo que forman los vectores  y .

13           

 

 

 

 

 

 

 

 

 

 

 

Seguiremos suponiendo aquí, para fijar ideas, que el astro perturbador es la Luna y definiremos los elemen­tos cuyas variaciones queremos hallar respecto al plano de la órbita de la Luna. Sean NN1 la órbita del satélite, NN el ecuador y NN1 la órbita lunar (Fig. 13.8). N es el nodo de la órbita lunar, N el nodo de la órbita del satélite (los dos respecto al ecuador) y N1 es el nodo de la órbita del satélite respecto a la órbita lunar. Sean, además, I la inclinación del plano de la órbita de la Luna con respecto al del ecua­dor; i, la del plano de la órbita del satélite con res­pecto al mismo plano del ecuador, e i1 la de la órbi­ta del satélite con respecto al de la órbita de la Luna. Llamemos, por otra parte, ,  y  a los ar­gumentos de los nodos N, N y N1 respectivamente, este último contado desde la línea de los nodos ON, y  y , a los argumentos del periastro contados sobre la órbita del satélite desde su intersección con el ecuador y la órbita lunar respectivamente.

El problema que tendremos que resolver es, pues, el de calcular , i1 y conocidos I, , , i y . Para ello podemos aplicar las fórmulas de la trigonometría esférica al triángulo NNN1 (Fig. 13.8) en el que se conocen dos ángulos (I, 180º - i) y un lado . Una vez determi­nados estos elementos les seguiremos llamando, por comodidad en los cálculos, , i y , con el bien entendido de que los tenemos referidos al plano de la órbita lunar que tomaremos como plano fundamental XY (Fig. 14.8).

14-15

 

 

 

H

 

 

 

 

 

 

HHallaremos las componentes de  en el sistema S, T, R. Observemos que  es suma de dos vectores, el primero de los cuales sólo tiene componente según S. El segundo está multiplicado por cos , factor que podemos calcular a partir del triángulo N L S (nodo – Luna - satélite) (Fig. 14.8):

 

                                   

 

fórmula que podemos simplificar si suponemos que la órbita del satélite es de inclinación pequeña . Escribiremos, pues:

                                                                                         (63.8)

 

Por otra parte, si consideramos el triángulo TLN y llamamos  al arco TL, podemos escribir (Fig. 15.8):

 

                                 

 

y, utilizando la misma hipótesis :

                                               

 

De todo ello resulta que los cosenos directores de  con respecto al sistema S,T,R son:

 

                           

 

y por tanto,

                                           

 

 

Luego, las componentes de , designando por M la masa de la Luna, serán:

 

                                               (64.8)

 

Si el astro perturbador describiese una órbita circular alrededor de la Tierra, GM/R3 sería constante. Llamando N2 a dicha constante, (64.8) quedaría:

                                                          (65.8)

 

habiendo supuesto .

Partiendo de la primera ecuación de Gauss tendremos:

                             

 

Suponiendo  e integrando según M, para lo cual haremos

                                                

 

tendremos:

                                           (66.8)

 

y como que lo que nos interesa son las perturbaciones seculares, para integrar podemos tomar u = M, con lo cual (66.8) se escribirá, operando:

              

 

de donde

                                                                      (67.8)

 

fórmula que nos dice que el nodo retrograda a lo largo del plano fundamental.

Si efectuáramos la integración entre 0 y M encontraríamos:

       (68.8)

 

que expresa una oscilación del nodo que tiene lugar al mismo tiempo que la retrogradación.

Si aplicásemos las expresiones (67.8) y (68.8) al caso de la Luna perturbada por el Sol (n  13º/día, N  1º/día), obtendríamos que el nodo de la órbita lu­nar retrograda, dando una vuelta completa en 18,6 años, mientras va oscilando alrededor de su posición media.

Partiendo de la segunda fórmula de Gauss obtenemos

                              

 

y, por consideraciones análogas al caso anterior,

                                    (69.8)

 

Utilizando la conocida fórmula trigonométrica

                                   

 

obtenemos:

                         

 

y volviéndola a aplicar:

                          

 

Por tanto:

                   (70.8)

 

de donde

                                                                                                               (71.8)

 

Si integrásemos entre 0 y M obtendríamos

        (72.8)

 

De estas expresiones (71.8) y (72.8) se deduce que sólo hay perturbaciones periódicas.

Para estudiar las perturbaciones producidas sobre el semieje mayor de la órbita, partiremos de la tercera fórmula de Gauss y, dado que suponemos e  0 se reducirá a

                                                       

 

es decir, en nuestro caso:

                                      

 

Luego, con    c = na2:

                                  

 

es decir,

                                                           

 

e integrando entre 0 y M:

                                   

 

o sea, que tampoco en este caso hay términos seculares.

Un cálculo análogo al efectuado nos daría

                                                           

 

Para el estudio de las variaciones del argumento del perigeo, partiendo de la quinta fórmula de Gauss, haciendo en ella V = M y teniendo en cuenta la primera, obtenemos:

                          

 

Sustituyendo  y por sus valores (65.8), haciendo  y , y utili­zando relaciones trigonométricas análogas a las utilizadas para calcular , integrando, obtenemos:

                                         

 

e integrando entre 0 y M:

 

 

Hay un término secular, lo cual era de esperar porque también aparece en , y los demás son términos periódicos.

 

ANTERIOR

ÍNDICE

SIGUIENTE