
Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 75

Received 14 September 2010.

Accepted 21 December 2010.

PARSING OF KUMAUNI LANGUAGE SENTENCES

AFTER MODIFYING EARLEY’S ALGORITHM

Rakesh PANDEY
1
 & Hoshiyar S. DHAMI

2
1Amrapali Institute of Technology and Sciences, Haldwani, Uttrakhand (India)

rakeshpandeyaits@gmail.com
2Kumaun University, Almora Uttrakhand (India)

profdhami@rediffmail.com

Abstract

Kumauni language is one of the regional languages of India, which is spoken in one of the

Himalayan region Kumaun. Since the language is relatively understudied, in this study an attempt has

been made to develop a parsing tool for use in Kumauni language studies. The eventual aim is help

develop a technique for checking grammatical structures of Kumauni sentences. For this purpose, we

have taken a set of pre-existing Kumauni sentences and derived rules of grammar from them. While

selecting this set of sentences, effort has been made to select those sentences which are representative of

the various possible tags of parts of speeches of the language, as used currently. This has been done to

ensure that the sentences constitute all possible tags. These derived rules of Kumauni grammar have been

converted to a mathematical model using Earley’s algorithm suitably modified by us. The mathematical

model so developed has been tested on a separate set of pre-existing Kumauni sentences and thus

verified. This mathematical model can be used for the purpose of parsing new Kumauni sentences, thus

providing researchers a new parsing tool.

Keywords

Kumauni Language, Context-free Grammar, Earley’s Algorithm, Natural Language Processing, Parsing

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 76

EL ETIQUETADO DE FRASES DEL KUMAUNI DESPUÉS DE MODIFICAR EL ALGORITM O DE

EARLEY ’S

Resumen

La lengua kumauni es una de las lenguas regionales de la India, hablada en el área de Kumaun en

la región del Himalaya. Puesto que esta lengua ha sido muy poco estudiada, en este trabajo se ha

pretendido desarrollar una herramienta de etiquetado útil para los estudios sobre el kumauni. El objetivo

final es contribuir a desarrollar una técnica para la comprobación de de las estructuras gramaticales en las

oraciones del kumauni. Con esta finalidad, se ha escogido un conjunto de oraciones preexistentes del

kumauni y a partir de ellas se han derivado reglas gramaticales. Además de esta selección, se ha

intentado elegir aquellas oraciones que se usan actualmente y que son representativas de las posibles

etiquetas en que pueden marcarse partes del habla. Esta elección se ha realizado para asegurar que en las

oraciones aparezcan todas las etiquetas posibles. Las reglas derivadas de la gramática del Kumauni se

han convertido a un modelo gramatical mediante el uso del algoritmo de Earley’s previamente

modificado. El modelo matemático desarrollado se ha verificado aplicándolo a un conjunto separado de

oraciones preexistentes del Kumauni. Este modelo puede usarse para etiquetar nuevas oraciones del

kumauni, ofreciendo a los investigadores una nueva herramienta de etiquetaje.

Palabras clave

lengua kumauni, gramática libre de contexto, algoritmo de Earley’s, Procesamiento del lenguaje natural,

etiquetado

1. Introduction

Parsing can be done in three stages. The first stage is Token Generation, or lexical

analysis, by which the input character stream is split into meaningful symbols defined

by a grammar of regular expression. The next stage is Parsing or syntactic analysis,

which involves checking that the tokens form an allowable expression. This is usually

done with reference to a Context Free Grammar (CFG) that recursively defines

components which can make up an expression and the order in which they must appear.

The final phase is Semantic Parsing or analysis, which requires working out the

implications of the expression just validated and taking the appropriate action. In the

case of a calculator or interpreter, the action is to evaluate the expression or program; a

compiler, on the other hand, generates some kind of code. Attribute grammars can also

be used to define these actions. Brian Roark (2001) presents a lexicalized probabilistic

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 77

top-down parser which performs very well, in terms of both the accuracy of returned

parses and the efficiency with which they are found, relative to the best broad-coverage

statistical parsers.

Top-down backtracking language processors have some advantages compared to

other methods, i.e.

1) They are general and can be used to implement ambiguous grammars.

2) They are easy to implement in any language that supports recursion.

3) They are highly modular, i.e. the structure of the code is closely related to the

structure of the grammar of the language to be processed.

4) Associating semantic rules with the recursive functions that implement the

syntactic productions rules of the grammar is straightforward in functional

programming.

Languages which cannot be described by CFG are called Context Sensitive

Languages. Tanaka (1993) has developed an algorithm for CFG. An informal

description of a new top-down parsing algorithm has been developed by Richard A.

Frost et al. (2006) that accommodates ambiguity and left recursion in polynomial time.

Shiel (1976) noticed the relationship between top-down and Chart parsing and

developed an approach in which procedures corresponding to non-terminals are called

with an extra parameter, indicating how many terminals they should read from the

input. Fujisaki Tetsunosuke (1984) has tested a corpus to parse it using Stochastic

Context Free Grammar and probability theory to make the parse tree. R. Frost et al.

(2007) presented a method by which parsers can be built as modular and efficient

executable specifications of ambiguous grammars containing unconstrained left

recursion. In 2008 the same authors, Frost et al. (2008), described a parser combinator

as a tool that can be used to execute specifications of ambiguous grammar with

constraints left recursion, which execute polynomial time and which generate compact

polynomial sized representation of the potentiality.

Devdatta Sharma (1985), a leading linguist, was the first to study Kumauni

language linguistically. To carry his initiative further, we have taken Kumauni language

for information processing, i.e. to check the grammars of input sentences. Parsing

process makes use of two components; a parser, which is a procedural component and a

grammar, which is declarative. The grammar changes depending on the language to be

parsed while the parser remains unchanged. Thus by simply changing the grammar, a

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 78

system would parse a different language. We have taken Earley’s Parsing Algorithm for

parsing Kumauni sentences according to a grammar that we have defined for Kumauni

language, using a set of pre-existing Kumauni sentences.

2. Earley’s Parsing Algorithm

The task of the parser is essentially to determine if and how grammar of a pre-

existing sentence can be determined. This can be done essentially in two ways, Top-

down Parsing and Bottom- up parsing.

Earley’s algorithm is a top-down dynamic programming algorithm. We use

Earley’s dot notation: given a production X → xy, the notation X → x • y represents a

condition in which x has already been parsed and y is expected.

For every input position (which represents a position between tokens), the parser

generates an ordered state set. Each state is a tuple (X → x • y, i), consisting of

• the production currently being matched (X → x y);

• our current position in that production (represented by the dot);

• the position i in the input at which the matching of this production began: the

origin position.1

The state set at input position k is called S(k). The parser is seeded with S(0),

consisting of only the top-level rule. The parser then iteratively operates in three stages:

prediction, scanning, and completion.

• Prediction: For every state in S(k) of the form (X → x • Y y, j) (where j is the

origin position as above), add (Y → • z, k) to S(k) for every production in the

grammar with Y on the left-hand side (Y → z).

• Scanning: If a is the next symbol in the input stream, for every state in S(k) of

the form (X → x • a y, j), add (X → x a • y, j) to S(k+1).

• Completion: For every state in S(k) of the form (X → z •, j), find states in S(j)

of the form (Y → x • X y, i) and add (Y → x X • y, i) to S(k).

For example, let we take a sentence.

1 Earley’s original algorithm included a look-ahead in the state. Later research showed this to have little
practical effect on parsing efficiency and it has subsequently been dropped from most implementations.

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 79

Let the input sentence be: “You eat the food in the restaurants”. The following

numeric key can be supplied to the words of this sentence:

“0 You 1 eat 2 the 3 food 4 in 5 the 6 restaurant 7”.

Here the numbers appeared between words are called position numbers.

For CFG rule S →NP VP we will have three types of dotted items:

• [S→ .NP VP, 0, 0]

• [S→ NP.VP, 0, 1]

• [S→ NP VP., 0, 4]

Here,

S → Starting Symbol

NP → Noun Phrase

VP → Verb Phrase

1. The first item indicates that the input sentence is going to be parsed applying

the rule S → NP VP from position 0.

2. The second item indicates the portion of the input sentence from the position

number 0 to 1 that has been parsed as NP and the remainder left to be satisfied as VP.

3. The third item indicates that the portion of input sentence from position number

0 to 4 has been parsed as NP VP and thus S is accomplished.

Using Earley’s parsing algorithm

1. For each production S→ x, create [S→ x, 0, 0]

2. For j = 0 to n (n is the length of the input sentence)

3. For each item in the form of [X→ x.Yy, i, j] apply Predictor operation while a

new item is created.

4. For each item in the form of [Y→ z.i, j] apply Completer operation while a new

item is created.

5. For each item in the form of [X→ x.wy, i, j] apply Scanner operation.

6. If we find an item of the form [S→ x., 0, n] then we accept it.

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 80

Let us take another example.

“0 you 1 eat 2 the 3 food 4”.

Consider the following grammar:

1. S → NP VP 2. S → S PP

3. NP → n 4. NP → art n

5. NP → NP PP 6. PP → p NP

7. VP → v NP 8. n → You

9. n → food 10. v → eat

11. art → the

Now, parsing the sentence using Earley’s parsing technique:

Step no. Formula Used operation

1 [S→.NP VP, 0, 0] Initialization

2 [S→.S PP, 0, 0] Apply Predictor to step 1 and step 2

3 [NP→.n, 0, 0]

4 [NP→.art n, 0, 0]

5 [NP→.NP PP, 0, 0] Apply Predictor to step 3

6 [n→.“You”, 0, 0] Apply scanner to 6

7 [n→ “You”, 0, 1] Apply Completer to step 7 with step 3

8 [NP→n., 0, 1] Apply Completer to step 8 with step 1 and step 5

9 [S→NP.VP, 0, 1]

10 [NP→NP.PP, 0, 1] Apply Predictor to step 9

11 [VP→.v NP, 1, 1] Apply Predictor to step 11

12 [v→.“eat”, 1, 1] Apply Predictor to step 10

13 [PP→.p NP, 1, 1] Apply Scanner to step 12

14 [v→ “eat”.1, 2] Apply Completer to step 14 with step 11

15 [VP→v.NP, 1, 2] Apply Predictor to step 15

16 [NP→.n, 2, 2]

17 [NP→.art n, 2, 2]

18 [NP→.NP PP 2, 2] Apply Predictor to step 17

19 [art → .“the”, 2, 2] Apply Scanner to step 19

20 [art → “the”., 2, 3] Apply Completer to step 20 with step 17

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 81

21 [NP → art .n, 2, 3] Apply Predictor to step 21

22 [n → .“food”, 3, 3] Apply Scanner to step 22

23 [n → “food”., 3, 4] Apply Completer to step 23 with step 21

24 [NP → art n., 2, 4] Apply Completer to 24 with 15

25 [VP → v NP., 1, 4] Apply Completer to 25 with 9

26 [S → NP VP., 0, 4] Complete

Table 1. Parsing of the sentence by Earley’s algorithm

3. Derivation of Kumauni language grammar and modification of Earley’s

Algorithm

It is next to impossible to collect all types of sentences of any language; hence we

have taken some pre-existing Kumauni sentences randomly and tried to derive rules of

grammar from them. In this section we are making an attempt to develop a grammar of

a language, which is understudied and underdeveloped and some of its folk characters

are at the brink of extinct. It is the case of Kumauni, the language spoken in the

panoramic locations of valleys of mountains of central Himalaya, which is a tranquil

land in mist. This language can be divided into different dialects according to social and

geographical differences.

Structure of Kumauni grammar is same as Hindi grammar:

Subject+ object+ verb.

We can see that a sentence can be written in different forms, which have the same

meaning, i.e. positions of tags are not fixed. Therefore, we can not fix the grammar rule

for one sentence, which might cause the grammar rule to become very long. The

grammar rules that we have derived may not apply to all the sentences in Kumauni

language since we have not considered all types of sentences possible in Kumauni

language. Some of the sentences that have been used to make the rules of grammar for

Kumauni language are given below:

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 82

Kumauni In English Grammar

kAn Je re? Where are you going? PP –VP

sab thEk Chan They all are fine NP- ADJ- VP

Ook byAh pichal sAl haigou he got married last year PN - ADJ- NP - VP

theek cha pein ItvAr din milOn Well, see you on Sunday. ADVP- PP – NP - VP

mein itvAr din Onake koshish

karou

I will try to come on Sunday PN- NP- ADV- VP

main pushp vihar sAketak paas

roo(n)chou

I live in Pushp Vihar near

Saket

PN- NP- PP- VP

Par jAno pein Good Night VP

myAr bAbu fauj me naukari

kareni

my father is serving in indian

army

NP- NP- PP- VP

jaduk AshA, utuk haber jyAdA

hainch

It is more then expected NP- ADJ- VP

champAwat bahute bhal jAg

chuu

Champawat is a very

beautiful place

NP- ADJ-VP

makai wanki ligi bahut door

chaln pado

I have to go far for that place NP- PP- ADJ- VP

ter mukh to nai buwAr jas

chamakano

Your face is shining like a

new bride.

NP - PP- VP

ab mee jaa Now I am going ADVP- PN- VP

Table 2. Grammar generation for Kumauni

Let K be the set of all parts of speeches in Kumauni language,

K = (NP, PN, VP, ADV, ADJ, PP, ART, IND)

Where

NP → Noun

PN → Pronoun

VP → Verb

ADV → Adverb

ADJ → Adjective

PP → Preposition

ART → Article

IND → Indeclinable

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 83

Formation of vector space for a language

Using English language, since it has 8 parts of speeches, we can form a matrix

(callled connection matrix) of the order 8 x 8, where rows and columns are represented

by parts of speeches. This matrix pertains to the FOLLOW relation.

PREV (x) = {Set of all lexical categories that can precede x in a sentence}

 = {y: (Row y, Column x) is 1}

FOLLOW (x) = {y: (Row x, Column y) is 1}

For example, we take a sentence

“John is looking very smart”

Parsing it in parts of speeches, it becomes

NP VP ADV NP

Its connection matrix representation is depicted as:

 NP PN VP ADV ADJ PP ART IND

NP 0 0 1 0 0 0 0 0

PN 0 0 0 0 0 0 0 0

VP 0 0 0 2 0 0 0 0

ADV 3 0 0 0 0 0 0 0

ADJ 0 0 0 0 0 0 0 0

PP 0 0 0 0 0 0 0 0

ART 0 0 0 0 0 0 0 0

IND 0 0 0 0 0 0 0 0

Table 3. Adjacency matrix of the sentence

Using a text document, we get several sentences and each sentence can be

represented by a connection matrix of the order 8 x 8. Thus, a set of all matrices of the

order 8x8 forms a vector space V of dimension 64 over the field of integers under

addition and usual multiplication. Therefore, in a text document each sentence is an

element of this vector space. Now, in any sentence, there are several parts of speeches

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 84

hence it can be a subspace of the vector space generated for language. Similarly, parts

of a sentence will also be a subspace of the sentence.

To carry this argument further, we propose some linear transformations of

subspaces of Kumauni sentence. In the following sequence:

• T is linear transformation of Sentence subspace in Kumauni.

• U is linear transformation of the Proposition-phase subspace in Kumauni.

• W is the linear transformation of the Noun-phase subspace in Kumauni.

Additionally, Identity transformation has also been used.

T: (S) U: (PP) W: (NP)

T1: (S)= PP VP U1: (PP)= PN NP W1: (NP)= NP PP

T2: (S) = PP U2: (PP)= NP PN W2: (NP)= PP NP

 U3: (PP)= ADJ NP W3: (NP)= ADV NP

 U4: (PP)= NP ADJ W4: (NP)= PP

 U5: (PP)= NP W5: (NP)= ART NP

 U6: (PP)= ADJ W6: (NP)= NP ART

 U7: (PP)= IND NP W7: (NP)= IND PN

 U8: (PP)= PN W8: (NP)= PN IND

 U9: (PP)= ADV NP W9: (NP)= VP

 U10: (PP)= ADV

Table 4. Transformation rules for phrase subspaces

3.1. Modification of Earley’s Algorithm for Kumauni Text Parsing

We know that Earley’s algorithm uses three operations, Predictor, Scanner and

Completer. We add Predictor and Completer in one phase and Scanner operation in

another phase.

Let x, y, z, PP, VP are sequence of terminal or nonterminal symbols and S, B are

non terminal symbols.

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 85

Phase 1: (Predictor + Completer)

For an item of the form [S → x .By, i, j], create [S → x.zy, i, j] for each production

of the [B → z]. Mathematically in phase 1 we apply the transformations suggested

earlier.

Phase 2: (Scanner)

For an item of the form [S → x.wy, i, j] create [S → xw.y, i, j+1], if w is a terminal

symbol appeared in the input sentence between j and j+1. When the transformation is

successfully applied then it allows us to move in to next position or transformation.

Our Algorithm:

Input: Tagged Kumauni Sentence

Output: Parse Tree or Error message

Step 1: If Verb is present in the sentence then [T: S → .PP VP, 0, 0] then we use

transformation T1.

Else [T: S → .PP, 0, 0] then we use transformation T2.

Step 2: Use the transformation U and W and do the following steps in a loop until

there is a success or error

Step 3: For each item of the form of [S → x.By, i, j], and we use transformations

Ti, Ui, Wi.

Step 4: For each item of the form of [S→ .xwy, i, j], apply phase 2

Step 5: If we find an item of the form [S →nx. , 0, n], i.e the transformations work

successfully, then we accept the sentence as success else error message. Where n is the

length of input sentence.

And then come out from the loop.

Step 6: Generate the parse trees for the successful sentences according to the used

transformations.

A transformation is said to be success if it same as any member of table 1.

Some other modifications of Earley’s algorithm:

1. Earley’s algorithm blocks left recursive rules [W: NP→ .NP PP, 0, 0], when

applying Predictor operation. Since Kumauni Language is a Free-Word-Order language.

We are not blocking this type of rules.

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 86

2. Earley’s algorithm creates new items for all possible productions, if there is a

non terminal in the left hand side rule. But we reduce these productions by removing

such type of productions, which create the number of total productions in the stack,

greater then total tag length of the input sentence.

3. Another restriction we used in our algorithm for creating new item is that, if the

algorithm currently analyzing the last word of the sentence, then it selects only the

single production in the right hand side (example [U: PP→NP]). The other rules (which

have more then one production rules in right hand side (example [U: PP→PN NP])) are

ignored by the algorithm.

3.2. Parsing Kumauni text using proposed grammar and algorithm

Let us take a Kumauni sentence.

 (Mee tyar dagad bazAr joo)

In English it means,

“ I will go to market with you”

Now the position number for the words are placed according to which word will

be parsed first.

0 Mee 1 tyar 2 dagad 3 bazaar 4 joo 5

Where in our sentence

1. PN → “mee” 2. PN → “tyar” 3. PP → “dagad” 4. NP → “bazaar”

5. VP → “joo”

Now we use the transformation defined earlier (Table 3)

Parsing process will proceed as follows:

Sr. No Rule Phase applied

1 [S → .PP VP , 0, 0] by T1 Apply Phase 1

2 [S → .NP VP, 0 , 0] by U5 Apply Phase 1

3 [S → .PP NP VP, 0, 0] by W2 Apply Phase 1

4 [S → .PN NP NP VP, 0, 0] by U1 Apply Phase 1

5 [S →. “mee” NP NP VP, 0, 0] Apply Phase 2

6 [S →. “mee” .NP NP VP, 0, 1] by identity Apply Phase 1

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 87

 transformation

7 [S → “mee” .PP NP VP, 0, 1] by W4

8 [S → “mee” PN NP NP VP, 0, 1] by U1 Apply Phase 1

9 [S → “mee”. “tyar” NP NP VP, 0, 1] Apply Phase 2

10 [S → “mee”. “tyar” .NP NP VP, 0, 1] by

identity transformation

Apply Phase 1

11 [S → “mai” “tyar” .PP NP VP, 0, 2] by W4 Apply Phase 1

12 [S → “mee” “tyar”.“dagad” NP VP, 0, 2] Apply Phase 2

13 [S → “mee” “tyar” “dagad” .NP VP, 0, 3] by

identity transformation

Apply Phase 1

14 [S → “mee” “tyar” “dagad”..“bazaar” VP, 0, 3] Apply Phase 2

15 [S → “mee” “tyar” “dagad”..“bazaar” .VP, 0, 4] by

identity transformation

Apply Phase 1

16 [S → “mee” “tyar” “dagad”..“bazaar” . “joo”, 0, 4] Apply Phase 2

17 [S → “mee” “tyar” “dagad”..“bazaar” . “joo”, 0, 5] Complete

Table 5. Parsing of the sentence by modified Earley’s algorithm

In the above example, we have shown only the steps which proceeds to the goal.

The other steps are ignored.

4. Stages of the model

In the model there are 3 stages:

• Lexical Analysis

• Syntax Analysis

• Tree Generation

In the Lexical Analysis stage, program finds the correct tag for each word in the

sentence by searching the database.

There are seven databases (NP, PN, VP, ADJ, ADV, PP, ART, IND) for tagging

the words.

In Syntax Analysis stage, the program tries to analyze whether the given sentence

is grammatically correct or not.

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 88

In Tree Generation stage, the program finds all the production rules which lead to

success and generates parse tree for those rules. If there are more then one path to

success, this stage can generate more than one parse trees. It also displays the words of

the sentences with proper tags. The following figure shows a parse tree generated by the

model. The original parse tree for the above sentence is.

Figure 1. Parsed tree structure of sentence

5. Verification of program

After implementation of Earley’s algorithm using our proposed grammar, it has

been seen that the algorithm can easily generate parse tree for a sentence if the sentence

structure satisfies the grammar rules. For example, we take the following Kumauni

sentence:

 | (Mer nAma Kamal chh)

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 89

The structure of the above sentence is NP-NP-VP. This is a correct sentence

according to the Kumauni literature. According to our proposed grammar, a possible top

down derivation for the above sentence is:

1. S [Handle]

2. >>PP VP [T1: S→PP VP]

3. >> NP VP [U: PP→NP]

4. >>NP PP VP [W: NP→NP PP]

5. >>NP NP VP [U: PP → NP]

6. >>mer nAma NP VP [W: NP → mer nAma]

7. >>mer nAma kamalVP [W: NP→ Kamal]

8. >>mer nAma kamal chh [VP → chh]

From the above derivation it is clear that the sentence analysed by the model is

correct according to the proposed grammar, thus proving that our parsing model

generates a parse tree successfully. The actual programme shall be as follows.

Input sentence- Mer nAma Kamal chh.

Sentence recognized

Tree ---->

1. S

2. [S ---> (PP VP)]

3. [PP ---> (NP)] VP

4. [NP ---> (NP PP)] VP

5. [NP ---> (np :Mer nAma)]PP VP

6. [PP]VP

7. [PP ---> (NP)]VP

8. [NP ---> (np : Kamal)]VP

9. [VP]

10. [VP ---> (vp :chh)]

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 90

Figure 2. Verified tree structure by Earley’s Algorithm

This model tests only the sentence structure according to the proposed grammar

rules. So, if the sentence structure satisfies the grammar rules and follows Earley’s

algorithm then the model recognizes the sentence as a correct sentence and generates a

parse tree. Otherwise it gives an error output.

6. Conclusion

We have developed a context free grammar (CFG) for simple Kumauni sentences,

studied the issues that arise in parsing Kumauni sentences and produced an algorithm

suitable for those issues. This algorithm is a modification of Earley’s Algorithm, which

has proved to be simple and effective. Whereas the traditional Earley’s algorithm so

many steps in parsing, our model reduces the length of parsing steps. It has an added

feature in the sense that whereas Earley’s algorithm contains three stages, our model

works only in two steps.

©Universitat de Barcelona

Dialectologia 7 (2011), 75-92.
ISSN: 2013-2247

 91

7. Future Work

In this work, we have considered a limited number of Kumauni sentences for

deriving the grammar rules. We have also considered only the seven main tags. In

future work(s) related to the field of study covered in this paper, an attempt can be

made to consider many more Kumauni sentences and more tags, for developing a more

comprehensive set of grammar rules.

References

DEVIDATTA , Sarma (1985) The formation of Kumauni language (SILL: series in Indian

languages and linguistics), Bahri Publications.

EARLEY, Jay (1970) An efficient context free parsing algorithm, Communications of the ACM,

Volume 13, no 2, February-1970.

FROST, R., R. HAFIZ and P. CALLAGHAN (2007) “Modular and Efficient Top-Down Parsing for

Ambiguous Left-Recursive Grammars., 10th International Workshop on Parsing

Technologies (IWPT), ACL-SIGPARSE, June 2007, Prague, 109-120.

FROST, R., R. HAFIZ and P. CALLAGHAN (2008) “Parser Combinators for Ambiguous Left-

Recursive Grammars, 10th International Symposium on Practical Aspects of Declarative

Languages (PADL), ACM-SIGPLAN, January 2008, San Francisco, Springer, vol.

4902/2008, 167-181.

FROST, Richard A. and Rahmatullah HAFIZ (2006) “A New Top-Down Parsing algorithm to

Accommodate Ambiguity and Left Recursion in Polynomial Time”, ACM SIGPLAN

Notices, Vol. 41 (5), 45-54.

FUJISAKI, Tetsunosuke (1984) “A Stochastic approach to sentence parsing”, Annual Meeting of

the ACL Proceedings of the 10th International Conference on Computational Linguistics

and 22nd annual meeting on Association for Computational Linguistics, Stanford,

California, 16-19.

ROARK, Brian (2001) “Probabilistic top-down parsing and language modeling”, Computational

Linguistics MIT Press, volume 27, issue 2 (June 2001), 249-276.

©Universitat de Barcelona

Rakesh Pandey & Hoshiyar S. Dhami

 92

SHIEL, B. A. (1976) Observations on context-free parsing. Technical Report TR 12-76, Center

for Research in Computing Technology, Aiken Computational Laboratory, Harvard

University.

TANAKA , Hojumi (1993) Current trends on parsing - a survey, TITCS TR93-00031. Available

at www.citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.83

©Universitat de Barcelona

